
Physics Initialization
In this chapter, we will discover how to initialize the Bullet library, and learn
how to build our first physical rigid body object, which is the simplest object
available in Bullet.

The core bullet objects
Bullet is designed from the ground up to be highly customizable. Each major task
that the physics engine performs is isolated into its own modular component,
allowing them to be replaced with ease as long as they inherit from the appropriate
interface/base classes.

Most applications, such as ours, can make do with a generic, one-size-fits-all
selection of components, but if we ever find ourselves needing something more
advanced, optimized, or technically superior, then there is nothing stopping us
from interchanging the components or even building our own.

There are a handful of components that need to be created and hooked together
in order to initialize Bullet. We'll cover some essential theory on each of these
components, and then run through the code to create/destroy them.

Continue from here using the Chapter3.1_TheCoreBulletObjects
project files.

Physics Initialization

[38]

The world object
The primary control object for a Bullet physics simulation is an instance of
btDynamicsWorld. All of our physical objects will be controlled by the rules
defined by this class. There are several types of btDynamicsWorld that can be used,
depending on how you want to customize your physics simulation, but the one we
will be using is btDiscreteDynamicsWorld. This world moves objects in discrete
steps (hence the name) in space as time advances.

This class doesn't define how to detect collisions, or how objects
respond to collisions. It only defines how they move in response
to stepping the simulation through time.

The broad phase
A physics simulation runs in real time, but it does so in discrete steps of time.
Each step, there would be some number of objects which may have moved a small
distance based on their motion and how much time has passed. After this movement
has completed, a verification process checks whether a collision has occurred, and if
so, then it must generate the appropriate response.

Generating an accurate collision response alone can be highly computationally
expensive, but we also have to worry about how much time we spend checking for
collisions in the first place. The brute force method is to make sure that no collisions
have been missed by comparing every object against every other object, and finding
any overlaps in space, and doing this every step.

This would be all well and good for simple simulations with few objects, but not
when we potentially have hundreds of objects moving simultaneously, such as in a
videogame. If we brute force our way through the collision checks, then we need to
check all the N objects against the other N-1 objects. In Big O notation this is an O(N2)
situation. This design scales badly for increasing values of N, generating an enormous
performance bottleneck as the CPU buckles under the strain of having so much work
to do every step. For example, if we have 100 objects in our world, then we have
100*99 = 9,900 pairs of objects to check!

Chapter 3

[39]

Brute forcing one's way through physics collision detection
is typically the first performance bottleneck an inexperienced
game programmer comes across. Understanding what's
happening, and how to optimize these kinds of bulk processes
is a key component in becoming an effective game developer.

But, imagine if only two of those 100 objects are even remotely close together and the
rest are spread too far apart to matter; why would we waste the time doing precise
collision checks on the other 9,899 pairs? This is the purpose of broad phase collision
detection. It is the process of quickly culling away object pairs, which have little or
no chance of collision in the current step, and then creating a shortlist of those that
could collide. This is an important point because the process merely provides a rough
estimate, in order to keep the mathematics computationally cheap. It does not miss any
legitimate collision pairs, but it will return some that aren't actually colliding.

Once we have shortlisted the potential collisions, we pass them on to another
component of the physics simulation called narrow phase collision detection,
which checks the shortlist for legitimate collisions using more intense, but
accurate mathematical techniques.

For our project we will use a broad phase technique based on dynamic bounding
volumes. This algorithm create volumes of space which envelop pairs of objects in a
tree hierarchy using Axis-aligned bounding boxes (AABBs). These AABBs surround
the object with the smallest box shaped volume possible, that is aligned with each
axis, as we can see here:

y

x

Physics Initialization

[40]

It is a relatively cheap task to check if two AABBs overlap, but we can still
overburden ourselves if we don't perform some additional optimization. By
organizing the objects by pairs in a tree structure, we naturally organize our objects
by distance from one another, thus automatically culling away the object pairs which
are too far apart to be worth checking, as we can see here:

01

07

08
02

V4

V2

V5

V1

05
04

06 03

V6 V7

V3

It takes some processing work to maintain the tree hierarchy as objects move
around, since the AABBs have to be dynamically altered on occasion. But, this is
much less expensive than performing AABB overlap checks on every pair, every
iteration. You may recognize this tree structure as a simple binary tree:

V1

V6 V7

V3

01 02 08 07 05 06 03 04

V2

V4 V5

Chapter 3

[41]

This is no coincidence. The intent is to use the simplicity and speed of searching a
binary tree in order to quickly asses which objects are closest to others.

A btBroadPhaseInterface object is needed to tell our world object what technique
to use for its broad phase collision detection and the built-in type we will be using is
btDbvtBroadphase.

The collision configuration
This is a relatively simple component on the surface, but under the hood it
provides the physics simulation with components that handle essential tasks such
as determining how Bullet manages memory allocation, provides the algorithms for
solving various collisions (box-box, sphere-box, and so on), and how to manage the
data that comes out of the broad phase collision detection called Manifolds (we will
explore these in Chapter 6, Events, Triggers, and Explosions).

For this project, we'll keep things simple and use Bullet's default collision
configuration object, btDefaultCollisionConfiguration.

The collision dispatcher
The collision dispatcher, as the name implies, dispatches collisions into our
application. For a video game, it is practically guaranteed that we will want to
be informed of inter-object collision at some point, and this is the purpose of the
collision dispatcher.

One of the built-in collision dispatcher class definitions that come with Bullet is
the basic btCollisionDispatcher. The only requirement is that it must be fed
with the collision configuration object in its constructor (which forces us to create
this object second).

The constraint solver
The constraint solver's job is to make our objects respond to specific constraints.
We will learn more about the constraints in Chapter 5, Raycasting and Constraints.
We will be using btSequentialImpulseConstraintSolver for our project.

Note that our application class will be derived from and customized
in the BasicDemo class for the next several chapters. This keeps our
application layer code isolated from our physics/game logic.

Physics Initialization

[42]

Each of the components described previously can be customized to fit our needs; for
instance, we might be working within extremely tight memory requirements (such as
a mobile device), and so we might consider completely replacing the stack allocator
with our own to optimize Bullet's memory allocation processes.

Creating the Bullet components
Contrary to what the laborious explanations in the previous section might have you
believe, creating the necessary Bullet objects is relatively simple. Our application
layer class contains a handful of pointers that all the derived classes can use:

btBroadphaseInterface* m_pBroadphase;
btCollisionConfiguration* m_pCollisionConfiguration;
btCollisionDispatcher* m_pDispatcher;
btConstraintSolver* m_pSolver;
btDynamicsWorld* m_pWorld;

Meanwhile, the code to initialize Bullet can be found in BasicDemo and looks as
shown in the following code snippet:

m_pCollisionConfiguration = new btDefaultCollisionConfiguration();
m_pDispatcher = new
 btCollisionDispatcher(m_pCollisionConfiguration);
m_pBroadphase = new btDbvtBroadphase();
m_pSolver = new btSequentialImpulseConstraintSolver();
m_pWorld = new btDiscreteDynamicsWorld(m_pDispatcher,
 m_pBroadphase, m_pSolver, m_pCollisionConfiguration);

Creating our first physics object
Bullet maintains the same modular design of its core components even down to
individual physics objects. This allows us to customize physics objects through
their components by interchanging or replacing them at will.

Three components are necessary to build a physics object in Bullet:

• A collision shape, defining the object's volume and how it should respond
to the collisions with other collision shapes

• A motion state, which keeps track of the motion of the object
• A collision object, which acts as a master controller of the object,

managing the previously mentioned components and the physical
properties of the object

Chapter 3

[43]

We'll cover some essential theory on these components before we build one in code.
We'll also make some changes to our rendering system so that we can observe the
effects of gravity on our object.

Continue from here using the Chapter3.2_
CreatingOurFirstPhysicsObject project files.

The collision shape
The collision shape represents the volume of an object in space, be it a box, a sphere,
a cylinder, or some other more complex shape. Collision shapes do not care about the
rules of the world. They only care about how they should interact with other shapes,
and so it is the collision shape's responsibility to inform Bullet what kind of shape it
is, so that it can respond appropriately.

We will cover more varieties and intricacies of collision shapes in Chapter 7,
Collision Shapes, but for now we will build a simple collision shape component
using btBoxShape. This object's only requirement is to define its size upon creation.

As an interesting side note, spheres take a lot of polygons in order to generate an
accurate graphical representation of them. But, the physical representation of a
sphere is little more than a position and a radius, and calculating a sphere-to-sphere
collision is very simple (check the distance between their centers against the sum
of their radii). Meanwhile, a box is the exact opposite; they're cheap to generate
graphically (only 12 triangles), but expensive to generate physically and requires
much more complex mathematics to resolve collisions between them. Because of this,
spheres are commonly used for the collision shape of an object, even if its graphical
representation is not a sphere.

In addition, a newbie physics programmer would typically start out by using spheres
to represent the bounding volumes for objects to generate their very first broad phase
system. But, they will later graduate to using AABBs (similar to those described
previously) as they find that the spheres are not very good at representing long,
thin objects, and the mathematics aren't quite as efficient as AABB overlap checks.
Even though AABBs are technically boxes, they don't rotate (since the AA stands
for Axis-aligned), making the overlap math very simple—even simpler than
comparing two spheres for overlap.

Physics Initialization

[44]

The motion state
The motion state's job is to catalogue the object's current position and orientation.
This lets us to use it as a hook to grab the object's transformation matrix (also known
as a transform). We can then pass the object's transform into our rendering system in
order to update the graphical object to match that of the physics system.

This is an incredibly important point that cannot be ignored, forgotten, or otherwise
misplaced; Bullet does not know, nor does it care, how we render its objects. We
could add 100 physics objects into our application right now, and Bullet would move
them, detect collisions, and resolve them as we would expect a physics engine to
do; but unless we tell our OpenGL code to draw a graphical box object in the same
location, we will have no idea about what's going on (besides doing some step
through debugging and scanning the code, of course). Our physics and graphics
engines are completely isolated from one another, and they have different ways of
representing the same object.

Having no dependency between our graphics and physics is ideal because it means
that we could completely replace the physics engine without having to touch the
graphics engine, and vice versa. It also means that we can have invisible physics
objects (such as force fields), or graphical objects that don't need a physical presence
(such as particle effects).

It is not uncommon for a game engine to separate these
components entirely with three different libraries, resulting in
the three different sets of Vector3/Matrix4x4/Quaternion
classes in the lowest levels; one set for the physics, one set for the
graphics, and one set for general game logic.

As an example of extending Bullet, we will be creating our own motion state class
called OpenGLMotionState. This class will extend Bullet's btDefaultMotionState
to provide a useful helper function that simplifies the process of extracting the
objects transform data into a format our rendering system can use.

Chapter 3

[45]

The collision object
Collision objects are the essential building blocks of our physics objects, since they
maintain the object's physical properties, and give us a hook from which to alter the
object's velocity, acceleration, apply a force upon it, and so on. When we query the
motion state for the transform, it actually comes to this object to obtain it.

The simplest and most commonly used type of collision object is a btRigidBody.
Rigid bodies are physics objects that do not deform as a result of collisions, as
opposed to soft bodies which do. Rigid bodies are the easiest collision objects to
deal with because their behavior is consistent, and doesn't require extravagant
mathematics to handle basic collisions, unlike soft bodies which are far more
difficult and expensive to simulate.

Rigid bodies also require a btRigidBodyConstructionInfo object to be passed
through their constructor. This object stores data of important physical properties
for the rigid body, such as mass, friction, restitution, and so on.

Building a custom motion state
The entire code for our custom motion state can be found in a single header file
OpenGLMotionState.h. The only interesting function is GetWorldTransform(),
which takes an array of btScalars (16 of them to be precise, representing a 4 x 4
matrix), and performs a little math to return the same data in a format that OpenGL
understands. getOpenGLMatrix() is a helper function built into btTransform that
does this for us. OpenGL and Bullet are used together so often (the open source
graphics library used together with the open source physics engine; who would
have guessed?) that the developers of Bullet felt it was prudent to do this.

btScalar is a simple float by default, but could also be a double
if #define BT_USE_DOUBLE_PRECISION is placed somewhere in
the code. We'll continue to use floats for this project.

Physics Initialization

[46]

It is a clean and efficient process to feed data between Bullet and OpenGL because
they both use right-handed coordinate systems, which defines how the x, y, and z
axes relate to one another. If we used a different physics and/or graphics library, we
might find that our objects move or render backwards on one of the axes. In that case
we may have a disconnection between our coordinate systems, and we would need
to determine which axis has been flipped, and make the necessary adjustments. The
following diagram shows the difference between the left-handed and right-handed
coordinate systems:

Left hand Right hand

Y
Z

X

Y

Z

X

Creating a box
Creating a box-shaped rigid body is fairly simple; all of the code to create one can
be found in the CreateObjects() function of this chapter's source code. We simply
create the three modular components described previously (motion state, collision
shape, and collision object), hook them together, and then inform the world object
of its existence through addRigidBody(). The only awkward step is of using
btRigidBodyConstructionInfo. This object is an intermediate step in creating
btRigidBody and requires the mass, motion state, and collision shape objects before
it can be built, although it has other properties that can be modified such as the
coefficients of restitution (how much it bounces), and friction.

btRigidBody::btRigidBodyConstructionInfo rbInfo(1.0f,
 m_pMotionState, pBoxShape);
btRigidBody* pRigidBody = new btRigidBody(rbInfo);

Chapter 3

[47]

Rendering from transform data
We still have the problem that our DrawBox() function always draws a box at (0,0,0)
in world space. Before we can make use of the data from our object's motion state,
we will have to modify our rendering system to draw our object at a given location
instead. In order to do this, we'll need to introduce a few more OpenGL commands.

glPushMatrix() and glPopMatrix() are another pair of OpenGL delimiter
functions that work together in much the same way as glBegin() and glEnd()
do. They are used to control the matrix stack, which is very helpful while
drawing multiple objects, and objects that are meant to be connected together. As
mentioned previously, transformation matrices can be combined to get a resultant
transformation, and if we have multiple objects that share a similar transformation,
we can optimize our processing time by sharing information through the matrix
stack, instead of recalculating the same value over and over again.

This feature is particularly useful when we have object hierarchies such as a knight
riding on top of a steed, or moons orbiting planets, which themselves orbit stars.
This is the basic concept of a Scene Graph in 3D rendering (which is beyond the
scope of this book). The function to multiply the current matrix stack by a given
matrix is glMultMatrixf().

In this project, DrawBox() has been changed to collect an array of btScalars for the
transform, and uses the methods explained previously to manipulate the matrix stack
by surrounding the previous rendering code with calls to push and pop the stack.

Note that the /*REM*/ comment tags in the source code
represent code that has been removed and/or replaced
since the previous section.

Stepping the simulation
So, now we're rendering a graphical box in the same place as our physical box,
but we still don't see it moving. This is because the box isn't actually moving.
Why? Because Bullet has not been told to step the simulation, yet!

In order to do this, we simply call stepSimulation() on our btDynamicsWorld
object, providing the number of seconds that have elapsed since the last iteration.
The challenge here is counting the amount of time that has passed, since the last
time we called stepSimulation().

Physics Initialization

[48]

Bullet comes with a built-in btClock object, but if you have your own clock tool
in mind, which you trust to be more precise, then there's nothing stopping you
from using that for a counter instead. A good place to handle this logic is in the
application layer class with the following member variable:

btClock m_clock;

The clock can be used to calculate the time since the last step and updating
the application.

float dt = m_clock.getTimeMilliseconds();
m_clock.reset();
UpdateScene(dt / 1000.0f);

When we launch our application again, we should observe our box falling under
the effects of gravity as in the following screenshot:

The stepSimulation() function also accepts two more parameters; the second
parameter is the maximum number of substeps that can be calculated this iteration,
and the third is the desired frequency of step calculations.

If we ask Bullet to perform calculations at a rate of 60 Hz (the third parameter – 60
Hz is also the default), but one second has gone by (maybe our application froze
for a moment), Bullet will make 60 separate step calculations before returning. This
prevents Bullet from jumping every object for one full second in time all at once, and
possibly missing some collisions.

Chapter 3

[49]

However, calculating so many iterations at once could take a long time to process,
causing our simulation to slow down for a while as it tries to catch up. To solve this,
we can use the second parameter to limit the maximum number of steps it's allowed
to take in case one of these spikes occur. In this case, the world's physics will appear
to slow down, but it also means that your application won't suffer from a long period
of low frame rates.

In addition, the function returns the number of actual steps that took place, which
will either be the maximum, or less if it processed everything quickly enough.

Summary
We've created the essential components that Bullet needs to initialize, and hooked
them all together. We then created our first object in Bullet and extended our
rendering system to render the object as it moves through space. To do this we
created a custom class, OpenGLMotionState, which extends one of Bullet's own
objects. This class simplifies the process of obtaining the correct OpenGL transform
matrix from our object.

In the next chapter, we will implement a more robust system to handle multiple
objects, and look into extracting useful physics debug information from Bullet.

